Robust automatic mapping algorithms in a network monitoring scenario
نویسندگان
چکیده
1 Abstract Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method–of–moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box–Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the
منابع مشابه
A Robust Reliable Closed Loop Supply Chain Network Design under Uncertainty: A Case Study in Equipment Training Centers
The aim of this paper is to propose a robust reliable bi-objective supply chain network design (SCND) model that is capable of controlling different kinds of uncertainties, concurrently. In this regard, stochastic bi-level scenario based programming approach which is used to model various scenarios related to strike of disruptions. The well-known method helps to overcome adverse effects of disr...
متن کاملAutomatic Sperm Analysis in Microscopic Images of Human Semen: Segmentation Using Minimization of Information Distance
Introduction The morphologic features of human sperms are key indicators for monitoring fertility problems in men. Therefore, automated analyzing methods via microscopic videos have become the most favorite policy in infertility treatment during the last decades. Materials and Methods In the proposed method, firstly a hypothesis testing framework was defined to distinguish sperms from backgroun...
متن کاملApplication Mapping onto Network-on-Chip using Bypass Channel
Increasing the number of cores integrated on a chip and the problems of system on chips caused to emerge networks on chips. NoCs have features such as scalability and high performance. NoCs architecture provides communication infrastructure and in this way, the blocks were produced that their communication with each other made NoC. Due to increasing number of cores, the placement of the cores i...
متن کاملNovel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform
In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...
متن کاملToward an automatic real-time mapping system for radiation hazards
Detection and monitoring of nuclear accidents is of great importance. Many European countries have installed gamma dose rate monitoring networks to perform this task. Interpretation of the data would greatly benefit from real-time automatically generated maps with interpolated values based on the monitoring network. In this paper we present a first step toward a real-time automatic mapping syst...
متن کامل